TRANS-QUÃNTICA SDCTIE GRACELI, TRANSCENDENTE, RELATIVISTA SDCTIE GRACELI, E TRANS-INDETERMINADA.
FUNDAMENTA-SE EM QUE TODA FORMA DE REALIDADE SE ENCONTRA EM TRANSFORMAÇÕES, INTERAÇÕES, TRANSIÇÕES DE ESTADOS [ESTADOS DE GRACELI], ENERGIAS E FENÔMENOS DENTRO DE UM SISTEMA DE DEZ OU MAIS DIMENSÕES DE GRACELI, E CATEGORIAS DE GRACELI.
FUNÇÃO GERAL GRACELI DA TRANS- INDETERMINALIDADE PELO SDCTIE GRACELI
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS =
TRANSFORMAÇÕES ⇔ INTERAÇÕES ⇔ TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE ⇔ DIFRAÇÕES ⇔ estrutura eletrônica, spin, radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔ Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS, ⇔ Δ MASSA , ⇔ Δ CAMADAS ORBITAIS , ⇔ Δ FENÔMENOS , ⇔ Δ DINÂMICAS, ⇔ Δ VALÊNCIAS, ⇔ Δ BANDAS, Δ entropia e de entalpia, E OUTROS.
x
+ FUNÇÃO TÉRMICA.
, + FUNÇÃO DE TUNELAMENTO QUÂNTICO.
+ FUNÇÃO DE CONDUÇÃO ELETROMAGNÉTICA
X
V [R] [MA] = Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......ΤDCG XΔe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM...... =
xsistema de dez dimensões de Graceli +DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.[como, spins, posicionamento, afastamento, ESTRUTURA ELETRÔNICA, e outras já relacionadas]..- DIMENSÕES DE FASES DE ESTADOS DE TRANSIÇÕES DE GRACELI.xsistema de transições de estados, e estados de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia. [estados de transições de fases de estados de estruturas, quântico, fenomênico, de energias, e dimensional [sistema de estados de Graceli].x
número atômico, estrutura eletrônica, níveis de energia
- TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
- x
- X
- T l T l E l Fl dfG lN l El tf lP l Ml tfefelTa l RlLl
Em mecânica estatística, a estatística Maxwell–Boltzmann descreve a distribuição estatística de partículas materiais em vários estados de energia em equilíbrio térmico, quando a temperatura é alta o suficiente e a densidade é baixa suficiente para tornar os efeitos quânticos negligenciáveis. A estatística Maxwell–Boltzmann é consequentemente aplicável a quase qualquer fenômeno terrestre para os quais a temperatura está acima de poucas dezenas de kelvins.[1][2]
O número esperado de partículas com energia para a estatística de Maxwell–Boltzmann é onde:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
onde:
- é o número de partículas no estado i
- é a energia do estado i-ésimo
- é a degenerescência do nível de energia i, o número de estados dos partículas (excluindo o estado de "partícula livre") com energia
- é o potencial químico
- é a constante de Boltzmann
- é a temperatura absoluta
- é o número total de partículas
-
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- é a função partição
-
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- é a função exponencial, sendo e o número de Euler
A distribuição de Maxwell-Boltzmann tem sido aplicada especialmente à teoria cinética dos gases, e outros sistemas físicos, além de em econofísica para predizer a distribuição da renda. Na realidade a distribuição de Maxwell-Boltzmann é aplicável a qualquer sistema formado por N "partículas" ou "indivíduos" que interacambiam estacionariamente entre si uma certa magnitude e cada um deles têm uma quantidade da magnitude e ao longo do tempo ocorre que
X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
.
Limites de aplicação[editar | editar código-fonte]
Para um sistema de partículas quânticas, a hipótese de que seja substancialmente menor que para os estados diferentes do fundamental em geral não se cumprirá e é necessário recorrer-se à estatística de Bose-Einstein se as partículas são bosônicas ou à estatística de Fermi-Dirac se as partículas são fermiônicas.
As estatísticas de Bose–Einstein e Fermi–Dirac podem ser expressas como:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
Assumindo que o valor mínimo de é bastante pequeno, se pode verificar que a condição na qual a distribuição de Maxwell-Boltzmann é válida é quando se cumpre que:
Para um gás ideal, podemos calcular os potenciais químicos utilizando o desenvolvimento da equação de Sackur–Tetrode para demonstrar que:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
onde é a energia interna total, é a entropia, é o volume, e é o comprimento de onda térmico de de Broglie. A condição de aplicação para a distribuição Maxwell-Boltzmann em um gás ideal resulta:
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- RELATIVIDADE SDCTIE GRACELI EM
-
- Em mecânica estatística, a estatística de Bose–Einstein (ou mais coloquialmente estatística B-E) determina a distribuição estatística de bósons idênticos indistinguíveis sobre os estados de energia em equilíbrio térmico.
Formulação matemática[editar | editar código-fonte]
O número esperado de partículas num estado de energia i é:onde:é o número de partículas no estado i.
é a degenerecência quântica do estado i.
é a energia do estado i.
é o potencial químico.
é a constante de Boltzmann.
é a temperatura.A estatística de Bose-Einstein reduz-se à estatística de Maxwell-Boltzmann para energias: - X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- Em mecânica estatística, a estatística de Fermi-Dirac é uma estatística quântica que rege as partículas de spin semi-inteiro, os férmions. Leva o nome de dois eminentes físicos: Enrico Fermi e Paul Adrien Maurice Dirac cada um dos quais descobriu o método de forma independente (embora Fermi tenha definido as estatísticas antes de Dirac).[1][2]
Formulação matemática[editar | editar código-fonte]
A distribuição de Fermi-Dirac é dada porOnde:- é o número médio de partículas no estado de energia .
- é a degenerescência do i-ésimo estado
- é a energia no i-ésimo estado
- é o potencial químico
- é a temperatura
- a constante de Boltzmann
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
Conexão com a simetria do estado quântico[editar | editar código-fonte]
O princípio de exclusão de Pauli pode ser deduzido a partir da hipótese de que um sistema de partículas só pode ocupar estados quânticos anti-simétricos. De acordo com o teorema spin-estatística, sistemas de partículas idênticas de spin inteiro ocupam estados simétricos, enquanto sistemas de partículas de spin semi-inteiro ocupam estados anti-simétricos; além disso, apenas valores de spin inteiros ou semi-inteiros são permitidos pelos princípio da mecânica quântica.Como discutido no artigo sobre partículas idênticas, um estado anti-simétrico no qual uma das partículas está no estado (nota) enquanto a outra está no estado é- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
No entanto, se e são exatamente o mesmo estado, a expressão acima é identicamente nula:Isto não representa um estado quântico válido, porque vetores de estado que representem estados quânticos têm obrigatoriamente que ser normalizáveis, isto é devem ter norma finita. Em outras palavras, nunca poderemos encontrar as partículas que formam o sistema ocupando um mesmo estado quântico- Em mecânica estatística, a estatística de Fermi-Dirac é uma estatística quântica que rege as partículas de spin semi-inteiro, os férmions. Leva o nome de dois eminentes físicos: Enrico Fermi e Paul Adrien Maurice Dirac cada um dos quais descobriu o método de forma independente (embora Fermi tenha definido as estatísticas antes de Dirac).[1][2]
Formulação matemática[editar | editar código-fonte]
A distribuição de Fermi-Dirac é dada porOnde:- . é o número médio de partículas no estado de energia
- é a degenerescência do i-ésimo estado
- é a energia no i-ésimo estado
- é o potencial químico
- é a temperatura
- constante de Boltzmann a
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS
- X
FUNÇÃO FUNDAMENTAL E GERAL DO SISTEMA [SDCTIE GRACELI] DE INTERAÇÕES, TRANSFORMAÇÕES EM CADEIAS, DECADIMENSIONAL E CATEGORIAL GRACELI.E DE ESTADOS TRANSICIONAIS